12 dB Power Budget BIDI XFP 10GbE Transceiver

Features

- Supports 9.95Gb/s to 10.5Gb/s data rates
- Distance up to 20km over SMF
- Two types:
 - A: 1270nm DFB Transmitter/ 1330nm Receiver
 - B: 1330nm DFB Transmitter/ 1270nm Receiver
- LC Connector
- +3.3V power supply only
- Power dissipation <2W
- Built-in digital diagnostic functions
- ◆ Case temperature range: Standard: 0~+70°C
 Extended: -10~+85°C
- Complaint with XFP MSA
- Complaint with IEEE 802.3ae 10GBASE-LR/LW
- ◆ Complaint with 10GFC 1200-SM-LL-L

Applications

♦ A0GBASE-LR 10G Ethernet at

2

- 10.3125Gbps
- 10GBASE-LW 10G Ethernet at 9.953Gbps
- ▶ 1200-SM-LL-L 10G Fiber Channel at
 - 10.51875Gbps

12 dB Power Budget BIDI XFP 10GbE Transceiver

Regulatory Compliance

Feetune	<u>Ctonderd</u>	
Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883G	
(ESD) to the	Method 3015.7	Class 1C (>1000 V)
Electrical Pins		
Electrostatic Discharge	EN 55024:1998+A1+A2	
to the enclosure	IEC-61000-4-2	Compatible with standards
	GR-1089-CORE	
		Compatible with standards
		Noise frequency range: 30
	FCC Part 15 Class B	MHz to 6 GHz. Good system
Electromagnetic	EN55022:2006	EMI design practice required
Interference (EMI)	CISPR 22B :2006	to achieve Class B margins.
	VCCI Class B	System margins are
		dependent on customer host
		board and chassis design.
		Compatible with standards.
		1kHz sine-wave, 80% AM,
	EN 55024:1998+A1+A2	from 80 MHz to 1 GHz. No
Immunity	IEC 61000-4-3	effect on transmitter/receiver
		performance is detectable
		between these limits.
	FDA 21CFR 1040 10 and 1040.11	CDRH compliant and Class I
Laser Eye Safety	EN (IEC) 60825-1:2007	laser product.
	EN (IEC) 60825-2:2004+A1	TüV Certificate No. 50135086
		UL file E317337
Component Recognition		TüV Certificate No. 50135086
	ÈN60950-1:2006	(CB scheme)
	2002/95/EC 4.1&4.2	Compliant with stars lands [*] note?
RoHS6	2005/747/EC 5&7&13	Compliant with standards ^{*note2}

Note2: For update of the equipments and strict control of raw materials, SNR has the ability to supply the customized products since Jan 1th, 2007, which meet the requirements of RoHS6 (Restrictions on use of certain Hazardous Substances) of European Union.

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for SNR's transceivers, because SNR's transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Product Description

The SNR-XFP-WXX-20 series single mode transceiver is small form factor pluggable module for duplex optical data communications such as 10GBASE-LR/LW defined by IEEE 802.3ae and 10G Fiber Channel 1200-SM-LL-L. It is with the XFP 30-pin connector to allow hot plug capability.

The SNR-XFP-W73-20 module is designed for single mode fiber and operates at a nominal wavelength of 1270nm; SNR-XFP-W37-20 module is designed for single mode fiber and operates at a nominal wavelength of 1330nm. The transmitter section uses a multiple quantum well DFB, which is class 1 laser compliant according to International Safety Standard IEC-60825.

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Absolute Maximum Ratings*

	\sim			
Parameter	Symbol 🦳	Min	Max	Unit
Maximum Supply Voltage	Vcc	-0.5	4.0	V
Storage Temperature	Ts	-40	85	C
Case Operating	T _{CASE} , SNR-XFP-WXX-20	0	70	ĉ
Temperature	I _{CASE} , SINR- <u>AFF-W</u> AA-20	0	70	C

*Note3: Exceeding any one of these values may destroy the device permanently.

Recommend operating condition

Parameter <	Symbol	Min	Тур	Max	Units
Case Operating Temperature	To, SNR-XFP-WXX-20	0	-	70	C
Power Supply Current	lcc	-	-	580	mA
Supply Voltage	Vcc	3.13	-	3.45	V

Electrical Characteristics

 \square

$(T_0 = -10 \text{ to } 85^{\circ} \text{C}, \text{V}_{CC} = 3.15 \text{V to } 3.45 \text{V})$									
Parameter	Symbol	Min	Тур	Max	Unit				
	Trans	mitter							
Data Rate		9.95	-	10.52	Gbps				
Input differential impedance	Rin	90	100	110	Ω				
Differential data input swing* ^{Note4}	Vin,pp	120	-	820	mV				
Transmit Disable Voltage	VD	2.0	-	Vcc	V				
Transmit Enable Voltage	V _{EN}	GND	-	GND+ 0.8	V				
Transmit Disable Assert Time		-	-	10	us				

12 dB Power Budget BIDI XFP 10GbE Transceiver

Receiver							
Differential data output swing* ^{Note4}	Vout,pp	340	650	850	m∀		
Data output rise time* ^{Note5}	tr	-	-	38	ps		
Data output fall time* ^{Note5}	tf	-	-	38	(ps)		
LOS Fault	V _{LOS fault}	2.4	-	Vcc	V		
LOS Normal	V _{LOS norm}	GND	-	GND+0.5	V		

*Note4. Internal AC coupling.

*Note5. 20 - 80 %.

Optical Characteristics

(SNR-XFP-W73-20, 1270nm DFB & PIN/TIA)

mbol Mi	in. Typicai	Max.	Unit	
	20		km	
	9.953/10.312	5	Gbps	
smitter	\approx	·		
λ _c 12	.60) 1270	1280	nm	
Δλ		1	nm	
out, AVG	2	2	dBm	
	.5		dB	
MSR 3	0		dB	
TDP		2	dB	
γ		-30	dBm	
RIN		-128	dB/Hz	
Z _{IN} 90	0 100	110	Ω	
2.	.0	Vcc+0.3		
C	D	0.8	V	
2.	.0	V _{CC} +0.3		
C	0	0.8	V	
t_off		10	us	
ceiver		•		
λ _C 132	20	1340	nm	
PIN		-14	dBm	
P _{MAX} 0.	.5		dBm	
P _{IN} 90	0 100	110	Ω	
.OS _D		-18	dBm	
-OS _A -3	30		dBm	
2.	.0	V _{CC} +0.3	\ <i>\</i>	
C	0	0.8	V	
	Image: second system Image: second system λ_c 12 $\Delta\lambda$ Image: second system $\Delta\lambda$ Image: second system Dut, AVG Image: second system ER 3 MSR 3 IDP Image: second system RIN Image: second system ZIN 9 ZIN 9 Condition 2 Image: second system 13 PIN 9 ONS_D Image: second system Image: second system Image: second system <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

12 dB Power Budget BIDI XFP 10GbE Transceiver

(SNR-XFP-W37-20, 1330nm DFB & PIN/TIA)

(SNR-XFF-W37-20, Parame		Symbol	Min.	Typical	Max.	Unit
9µm Core Diam	9µm Core Diameter SMF			20		km
Data Ra	Data Rate			9.953/10.3125		Gbps
	-	Transmitter				$\langle \rangle$
Centre Wave	length	λ _C	1320	1330	1340	nm
Spectral Width	(-20dB)	Δλ				nm
Average Output	Power ^{*note6}	Pout, AVG	-2		2	dBm
Extinction F	Ratio	ER	3.5			dB
Side Mode Suppre	ession Ratio	SMSR	30			dB
Transmitter and Disp	ersion Penalty	TDP		((2	dB
Average Power of Ol	F Transmitter				-30	dBm
Relative Intens	ity Noise	RIN			-128	dB/Hz
Input Differential	Impedance	Z _{IN}	90	1,00	110	Ω
TX Disable	Disable		2.0		Vcc+0.3	V
I A DISADIE	Enable		0		0.8	v
TX Fault	Fault		2.0	D	V _{CC} +0.3	V
I A Fault	Normal	$\langle \overline{F} \rangle$)))		0.8	v
TX Disable Ass	ert Time	t_off			10	us
		Receiver	\mathbf{i}			
Centre Wave	-	λς	1260		1280	nm
Sensitivity	note7				-14	dBm
Receiver Ov	erload	Рмах	0.5			dBm
Output Differential	P _{IN}	90	100	110	Ω	
LOS De-As	LOS De-Assert				-18	dBm
LOS Ass	ert	LOS _A	-30			dBm
LOS	High		2.0		V _{CC} +0.3	V
L03	Low		0		0.8	v

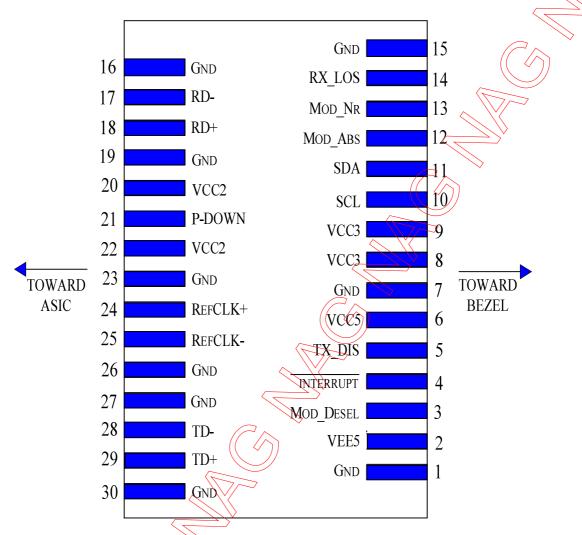
*Note6. Output is coupled into a 9/125um SMF.

*Note7: Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.

Pin Descriptions

	Pin Logic		Symbol	Name/Description	Ref.
	1		GND	Module Ground	1
	2		VEE5	Optional –5.2 Power Supply – Not required	
			Mod-Desel	Module De-select; When held low allows the module	
3 LVTTL-			MOG-Desei	to , respond to 2-wire serial interface commands	
				Interrupt (bar); Indicates presence of an important	
	4	LVTTL-O	Interrupt	condition which can be read over the serial 2-wire	2
	\mathbb{Z}	>		interface	
((LVTTL-I	TX DIS	Transmitter Disable; Transmitter laser source turned	
			17_013	off	
\bigvee	6		VCC5	+5 Power Supply, Not required	
\searrow	7		GND	Module Ground	1

12 dB Power Budget BIDI XFP 10GbE Transceiver


8		VCC3	+3.3V Power Supply	
9		VCC3	+3.3V Power Supply	
10	LVTTL-I	SCL	Serial 2-wire interface clock	2
11	LVTTL- I/O	SDA	Serial 2-wire interface data line	
12	LVTTL-O	Mod_Abs	Module Absent; Indicates module is not present. Grounded in the module.	2
13	LVTTL-O	Mod_NR	Module Not Ready;	2
14	LVTTL-O	RX_LOS	Receiver Loss of Signal indicator	2
15		GND	Module Ground	1
16		GND	Module Ground (1
17	CML-O	RD-	Receiver inverted data output	
18	CML-O	RD+	Receiver non-inverted data output	
19		GND	Module Ground	1
20		VCC2	+1.8V Power Supply Not required	
21	LVTTL-I	P_Down/R ST	Power Down; When high, places the module in the low power stand-by mode and on the falling edge of P_Down initiates a module reset Reset; The falling edge initiates a complete reset of the module including the 2-wire serial interface, equivalent to a power cycle.	
22		VCC2	+1.8V Power Supply – Not required	
23		GND	(() Module Ground</td <td>1</td>	1
24	PECL-I	RefCLK+	Reference Clock non-inverted input, AC coupled on the host board – Not required	3
25	PECL-I	RefCLK- <	Reference Clock inverted input, AC coupled on the host board – Not required	
26		GND	Module Ground	1
27		GND 🗸	Module Ground	1
28	CML-I	TD-	Transmitter inverted data input	
29	CML-I	TD4	Transmitter non-inverted data input	
30	_	GND	Module Ground	1
		$ \longrightarrow $		

Notes:

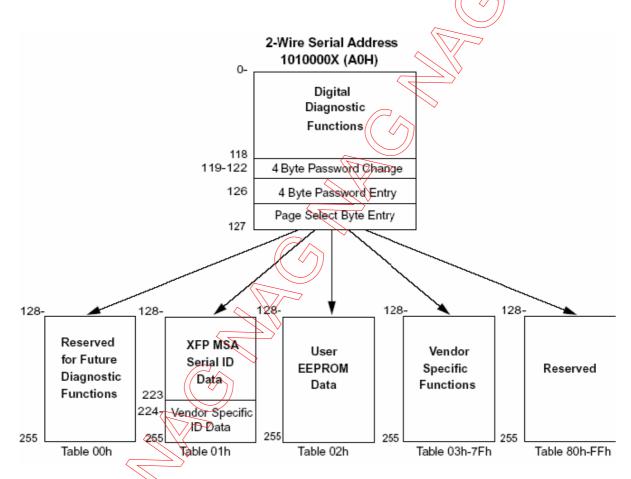
- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open collector, should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15Vand 3.6V.
- 3. A Reference Clock input is not required.

12 dB Power Budget BIDI XFP 10GbE Transceiver

Pin Arrangement

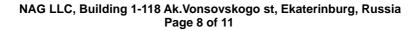
Diagram of Host Board Connector Block Pin Numbers and Name

Digital Diagnostic Functions

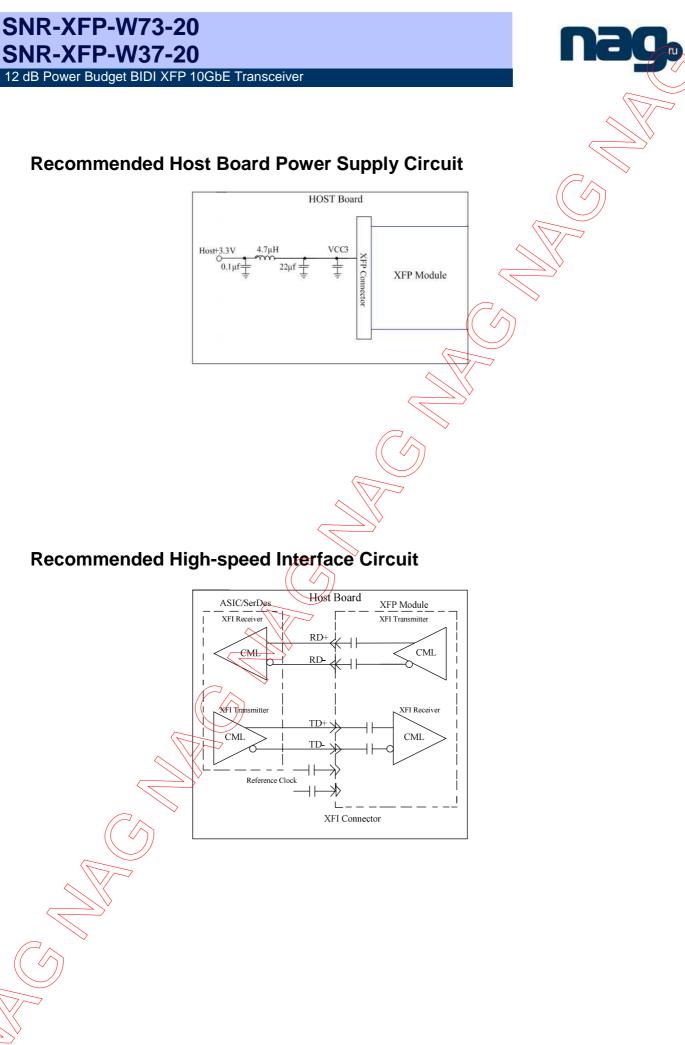

SNR-XFP-WXX-20 Small Form Factor 10Gb/s (XFP) transceivers are compliant with the current XFP Multi-Source Agreement (MSA) Specification Rev 4.5.

As defined by the XFP MSA, SNR XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage


12 dB Power Budget BIDI XFP 10GbE Transceiver

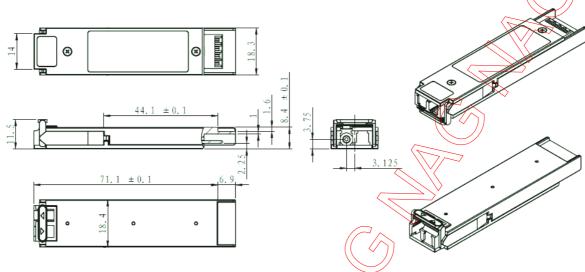
The structure of the memory map is shown in the following figure, which is accessible over a 2-wire serial interface at the 8-bit address 1010000X (A0h). The normal 256 byte I²C address space is divided into low and upper blocks of 128 Bytes. The lower block of 128 Bytes is always directly available and is used for the diagnostics and control function. Multiple blocks of memories are available in the upper 128 Bytes of the address space. These are individually addressed through a table select Byte which the user enters into a location in the lower address space. Thus, there is a total available address space of 128*256 = 32 Kbytes in this upper memory space. The contents of Table 01h are listed in following table. Please refer SFF INF-8077i (Revision 4.5) for detailed information.


Monitor Specification:

	Data Address	Parameter	Accuracy
	96 ~ 97	Temperature	± 3 °C
\sim	98 ~ 99	Reserved	
	100~101	Tx Bias	±10%
	102~103	Tx Power	±2dB
	104~105	Rx Power	±2dB
	106~107	Vcc3	± 3%

SNR-XFP-W37-20

12 dB Power Budget BIDI XFP 10GbE Transceiver



12 dB Power Budget BIDI XFP 10GbE Transceiver

Mechanical Specifications

SNR's XFP transceivers are compliant with the dimensions defined by the XFP Multi-Sourcing Agreement (MSA).

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Notice:

SNR reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. SNR makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

12 dB Power Budget BIDI XFP 10GbE Transceiver

GUARANTEE:

CONTACT:

Address: Building 1-118, Ak.Vonsovskogo st, Ekaterinburg, Russia Tel: +7(343) 379-98-38 Fax: +7(343) 379-98-38

E-mail: <u>info@nag.ru</u> WEB: <u>http://Shop.Nag.Ru</u>