

10Gbit/s X2 1550 nm Transceiver

Features

- ◆ Compatible with X2 MSA Rev.2.0b
- ◆ Support of IEEE 802.3ae, 10GBASE-ZR application
- ◆ Transmission distance up to 80km over SMF
- ◆ Low Power Consumption 2.0 W (typ.)
- Case Temperature Range:

Standard: -5℃ - 70℃

- ◆ APD Photo-detector
- ◆ Laser Class 1 compliant
- ◆ Duplex SC connector
- Hot pluggable 70-pin connector with XAUI electrical interface
- Management and control via MDIO 2-wire interface
- Complaint with the EU RoHS 6 Environmental requirements

Applications

♦ 10G Ethernet

Ordering Information

Part No.	Data Rate	Fiber	Distance*(note2)	Temperature	DDM
SNR-X2-ZR*(note1)	10.3125Gbps	SMF	80km	Standard	YES

Note1: Standard version

Note2: Over 9/125um SMF.

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883G Method 3015.7	Class 1C (>1000V)
Electrostatic Discharge to the Enclosure	EN 55024:1998+A1+A2 IEC-61000-4-2 GR-1089-CORE	Compliant with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022:2006 CISPR 22B :2006 VCCI Class B	Compliant with standards Noise frequency range: 30MHz to 6GHz. Good system EMI design practice required to achieve Class B margins. System margins are dependent on customer host board and chassis design.
Immunity	EN 55024:1998+A1+A2 IEC 61000-4-3	Compliant with standards. 1KHz sine-wave, 80% AM, from 80MHz to 1GHz. No effect on transmitter/receiver performance is detectable between these limits.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1:2007 EN (IEC) 60825-2:2004+A1	CDRH compliant and Class I laser product. TüV Certificate No. 50135086
Component Recognition	UL and CUL EN60950-1:2006	UL file E317337 TüV Certificate No. 50135086 (CB scheme)
RoHS6	2002/95/EC 4.1&4.2 2005/747/EC 5&7&13	Compliant with standards*note3

Note3: For update of the equipments and strict control of raw materials, SNR has the ability to supply the customized products since Jan 1, 2007, which meet the requirements of RoHS6 (Restrictions on use of certain Hazardous Substances) of European Union.

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for SNR's transceivers, because SNR's transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Description

The SNR-X2-ZR is a highly integrated, serial optical transponder module for high-speed, 10Gbit/s data transmission applications. The module is fully compliant to IEEE 802.3ae standard for Ethernet, making it ideally suited for 10GbE datacom (rack to-rack, client interconnection) applications. Designed for distances of up to 80km, the transponder module comprises a transmitter with a directly modulated uncooled 1550nm EML laser, a receiver with a APD photodiode, a XAUI-Attachment Interface, an integrated Coder /Decoder and multiplexer / de-multiplexer (SERDES: Serializer/Deserializer).

The transponder operates within a wide case temperature range of -5℃ to +70℃ and offers optimum heat dissipation and excellent electromagnetic shielding which enables high port densities for 10GbE systems. A 70 pin electrical connector and a duplex SC connector optical interface assure that connectivity is compliant to the X2 and XENPAK MSA.

Digital diagnostic monitoring (DDM) is implemented in SNR-X2-ZR and fully compliant with X2 DDM architecture. The unit monitors temperature, receive optical power, transmit optical power, and laser bias current.

Absolute Maximum Ratings*

Rating	Symbol	Min	Max	Units
Storage Ambient Temperature	Ts	-40	+85	S
Powered Case Temperature	Tc	-5	+70	G
Supply Voltage 3.3V	V _{CC3}	-0.3	4.0	V
Supply Voltage 5V	V_{CC5}	-0.5	7.0	V
Input Voltage Low Speed Signals	V_{I}	-0.5	3.3	V
Clamp Currents Low Speed Signals	I _{IK}	-50		mA
XAUI Input Level	V_{IXAUI}	-0.4	2.3	V
Differential XAUI Input Amplitude	V _{IDXAUI}		1000	mV
Static Discharge Voltage			500	V

^{*}Any stress beyond the maximum ratings can result in permanent damage. The device specifications are guaranteed only under the recommended operating conditions.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Operating Case Temperature Range	Tc	0		+70	C
Operating Humidity		8		80	%
Power Supply Voltage @ 3.3V	V_{CC3}	3.135	3.3	3.465	V
Power Supply Voltage @ 5.0V	V_{CC5}	4.75	5.00	5.25	V

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Units
5V Supply Current	I _{VCC5}	-	-	350	mA
3.3V Supply Current	I _{VCC3}	-	-	300	mA

XAUI Input Characteristics*Note4

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Data Rate				10.3125		GBD
Differential Input Voltage Swing	8B/10B Coded Input Signal	VID	175		2,000	mV_{P-P}
Differential Return Loss	100MHz — 2.5GHz	SDD11	10			dB
Common Mode Return Loss	100MHz — 2.5GHz	SCC11	6			dB
Total Peak-to-Peak Jitter Tolerance	Sinusoidal Jitter @ 0~20MHz	T _{jRDS}	0.32			UI
Differential Input Impedance		RIND	80	100	120	Ω

Note4: XAUI-input-Lanes are ac-inputs.

XAUI Output Characteristics*Note5

Parameter	Conditions	Symbol	Min	Тур	Max	Units
XAUI Data Rate				10.3125		GBD
Differential Output Voltage Swing	R _{LOAD} =100 ± 5%	V _{out}	800		1,600	mV_{P-P}
Differential Output Impedance		Z _{out}	80	100	120	Ω
Differential Transition Time	20% - 80%	tr/tf	50		130	ps
Total Output Jitter					0.17	UI
Total Deterministic Output Jitter					0.08	UI

Note5: XAUI-output-Lanes are ac-outputs.

Optical Interface

Recommended Operating Conditions

Parameter	Remark	Symbol	Min	Тур	Max	Units
Operating Range	Single Mode Fiber			80		km
Input Data Rate				10.3125		GBD
	Center Wavelength	λс		1550		nm
Receiver Input Signal	Sensitivity	P _{min}			-24	dBm
	Overload	P _{max}			-7	dBm

Transmitter Characteristics

(If not otherwise mentioned under recommended operating conditions and standard compliant single mode fiber.)

Characteristic	Conditions	Symbol	Min	Тур	Max	Units
Data Rate				10.3125		GBD
Nominal Wavelength		λς	1,530	1,550	1,570	nm
Spectral Width (-20 dB)		Δλ		0.6		nm
SMSR		SMSR	30			dB
Optical Output Power		Pout	-1		4	dBm
Extinction Ratio		ER	8.2			dB
Optical Modulation		OMA	500			Wq
Amplitude						Į
Transmitter Penalty	Bessel-Thompson Filter	TP			2	dB
Overshoot	Bessel-Thompson Filter	Os			40	%

Receiver Characteristics*Note6

(If not otherwise mentioned under recommended operating conditions and standard compliant single mode fiber.)

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Data Rate				10.3125		GBD
Center Wavelength Range		λ _C	1260		1600	nm
Receiver Sensitivity	BER 10-12@2 ³¹ -1	Pmin			-24	dBm
Receiver Overload	BER 10-12@2 ³¹ -1	Pmax			-7	dBm
Saturation Input Power		Sat	-5			dBm

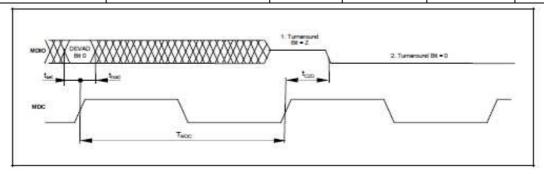
Note6: The specified characteristics are met within the recommended range of operating conditions and under the default settings of output power and modulation amplitude. Changing the settings of the optical output power will affect the dynamic behavior of the output signal. Unless otherwise noted, typical data is quoted at nominal voltages and +25°C ambient temperature.

MDIO Interface

DC Characteristics

(If not otherwise mentioned under the recommended operating conditions.)

Characteristic	Condition	Symbol	Minimum	Maximum	Unit
Input high voltage		V_{H}	0.84	1.5	V
Input low voltage		V_L	-0.3	0.36	٧
MDIO Input current	MMD Driver in tri-state	I _{MDIO}	-10	8	рΑ
MDC Input current		I _{MDC}	-5	5	рΑ
Output low voltage	IOL= 100pA	VQL	-0.3		٧
Output low voitage	IOL= 4mA	VQL		0.2	V
Output high voltage	RPULL-Up = $357\Omega \pm 1\%$ VPULL-Up = $1.14 \sim 1.5$ V	VQH	1.136	1.5	V
Output low current	VI = 0.2V	IQL	4		mΑ
MDIO Input capacitance	VI = 0~1.5V	Cin		10	pF



AC Characteristics

If not otherwise mentioned under the recommended operating conditions. Furthermore it's recommended that clock period time TMDC is not less than 310ns and the sum of input currents of loads on the bus does not exceed 256pA at high and at low not below -320pA.

Characteristic	Condition	Symbol	Minimum	Maximum	Unit
Set Up Time		tset		10	ns
Hold Time		t _{hold}		10	ns
Clock to Data Time	$R_{PULL-Up} = 357\Omega \pm 1\%,$ CBUS≤470pF	t _{C2D}	0	300	ns

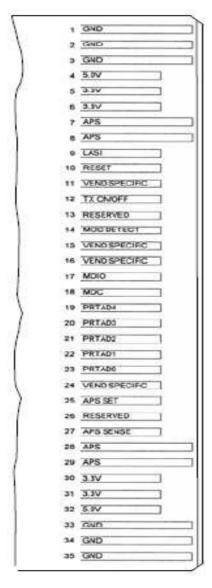
Example Timing Diagram: Turnover Timing at Read Cycle

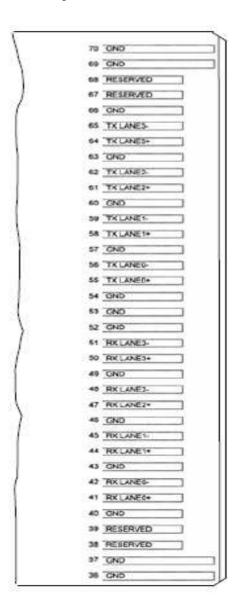
Electro Static Discharge (ESD)

The maximum electrostatic charge based on a human body model and the conditions as outlined below is:

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Static Discharge Voltage	MIL STD 883 Method				500	V

Thermal Management


The transponder is designed for an operation within a case temperature range between 0 to +70°C at an altitude of < 3km. The built in heatsin k provides an optimized thermal performance. The user needs to guarantee per system design not to exceed this temperature range. It has to be considered that in case of usage of multiple modules on a single hostboard that there is a temperature rise among the modules hosted side by side. Airflow direction and air speed needs to be choosen accordingly. For further information it is referred to the MSA document.


DDM Monitoring Specification

Parameter	Range	Accuracy	Calibration
Temperature	-10 to +80℃	± 3℃	Internal
Bias Current	0 to 100mA	±10%	Internal
TX Power	0 to +5dBm	± 3dB	Internal
RX Power	-25 to -4dBm	± 3dB	Internal

Card-Edge-Connector-Pinning and Layout

Top view -Top side of PCB

Top view-Bottom side of PCB

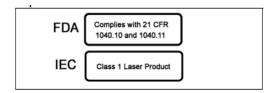
Electrical Pin Definition

Symbol	Logic	PIN	Name/Description	Note
3.3V		5, 6, 30, 31	Power Supply of Optical Receiver and	2
			Transmitter and Control Circuits	
5.0V		4, 32	Power Supply of Optical Receiver	2
		4, 32	Frontend	
APS		7, 8, 28, 29	Adaptive Power Supply, Supply of PHY	2
			XS and PCS Layer Devices	
APS SENSE		27	APS Sense Output for APS Control Circuit	
APS SET		25	Feedback Input for APS, Input of APS	
		25	Setting Resistor	
GND		1, 2, 3, 33,34,	Common Electrical Ground	1
		35, 36,37, 40,	Common Electrical Ground	ı

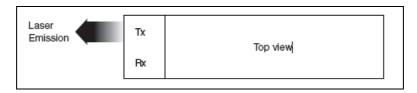
23 dB Power Budget X2 Transceiver

Г		10 15 15			
		43,46, 49, 52,			
		53, 54, 57,			
		60, 63, 66,			
		69, 70			
	1.2V		Link Alarm Status Interrupt, low active,		
	CMOS Open Drain	9	Open Drain Output Supposed to operate		
LASI			with $10K\Omega$ - $22K\Omega$ pull upon host. Logic		
			High: Normal Operation		
	Output		Logic Low: Link Alarm is indicated		
MDC		18	Management Clock Input	3	
MDIO		17	Management Data IO	3	
MOD DETECT		4.4	1kΩ to Ground for APS Circuit		
MOD DETECT		14	Environment		
	1.2V		Port Address Rit 0 (Love 0) internally		
PRTADO	CMOS	23	Port Address Bit 0 (Low = 0), internally pulled up by $18k\Omega$		
	Input		pulled up by 18kt2		
	1.2V		Port Address Bit 1 (Low = 0), internally		
PRTAD1	CMOS	22	, , , , ,		
	Input		pulled up by 18kΩ		
PRTAD2	1.2V CMOS 21		Dort Address Bit 2 (Love O) internally		
		21	Port Address Bit 2 (Low = 0), internally		
	Input		pulled up by 18kΩ		
	1.2V	20	Port Address Bit 3 (Low = 0), internally		
PRTAD3	CMOS				
	Input		pulled up by 18kΩ		
	1.2V CMOS 19 Input	Port Address Rit 4 (Low – 0) internally			
PRTAD4		19	Port Address Bit 4 (Low = 0), internally		
			pulled up by 18kΩ		
DECEDI/ED		13, 38, 39, 67,	Reserved by MSA, internally not		
RESERVED		68	connected		
DECEDIAL	200	26	Reserved for Avalanche Photodiode use,	5	
RESERVED		26	internally not connected	ວ 	
DEGET	1.2V	40	Low active Reset Input		
			10KΩ pull-up on Transceiver		
RESET	CMOS	10	Logic high = Normal Operation		
	Input		Logic Low = Reset asserted		
			High active Transmitter Enable Input		
TX ON/OFF	1.2V CMOS Input	12	10KΩ pull-up on Transceiver		
			Logic high = Transmitter active (normal		
			Operation)		
			And Register Bit 1.9.0 set to low as well		
			Logic Low = shut down of Transmitter		
VENDODEOUEIO		44 45 40 01	Vendor Specific Pin,. for proper operation	on _	
VENDSPECIFIC		11, 15, 16, 24	leave unconnected	5	

23 dB Power Budget X2 Transceiver

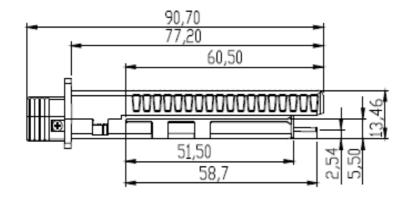

RX LANE0+	41	Module XAUI Output Lane 0+	4
RX LANE0-	42	Module XAUI Output Lane 0-	4
RXLANE1+	44	Module XAUI Output Lane 1+	4
RXLANE1-	45	Module XAUI Output Lane 1-	4
RX LANE2+	47	Module XAUI Output Lane 2+	4
RX LANE2-	48	Module XAUI Output Lane 2-	4
RX LANE3+	50	Module XAUI Output Lane 3+	4
RX LANE3-	51	Module XAUI Output Lane 3-	4
TX LANE0+	55	Module XAUI Input Lane 0+	4
TX LANE0-	56	Module XAUI Input Lane 0-	4
TXLANE1+	58	Module XAUI Input Lane 1+	4
TXLANE1-	59	Module XAUI Input Lane 1-	4
TX LANE2+	61	Module XAUI Input Lane 2+	4
TX LANE2-	62	Module XAUI Input Lane 2-	4
TX LANE3+	64	Module XAUI Input Lane 3+	4
TX LANE3-	65	Module XAUI Input Lane 3-	4

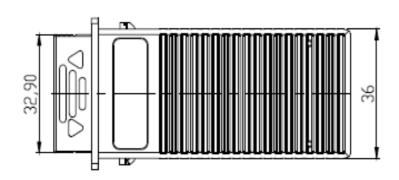
- 1) Ground connections are common for TX and RX.
- 2) Each connector contact is rated at 0.5A.
- 3) MDIO and MDC timing must comply with IEEE 802.3ae clause 45.3.
- 4) XAUI output characteristics comply with IEEE 802.3ae clause 47.
- 5) Transceivers will be MSA compliant when no signals are present on the vendor specific pins.

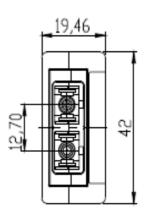

Eye Safety

This laser based multimode transceiver is a Class 1 product. It complies with IEC 60825-1: 2007 and FDA performance standards for laser products (21 CFR 1040.10 and 1040.11) except for deviations pursuant to Laser Notice 50, dated June 24, 2007.

Class 1 Labels




Laser Emission



Mechanical Drawing

Notice:

SNR reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. SNR makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

23 dB Power Budget X2 Transceiver

GUARANTEE:

CONTACT:

Addres: Building 118, Vonsovskogo Street 1, Yekaterinburg, Russia

Tel: +7(343) 379-98-38 **Fax:** +7(343) 379-98-38

E-mail: info@nag.ru

Online shop: http://shop.nag.ru